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The effect of uniform distortion on weak 
homogeneous turbulence 

By J. R. A. PEARSON 
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(Received 19 June 1968) 

The behaviour of weak homogeneous turbulence subjected to a uniform distor- 
tion is studied by means of linearized equations that include the effect of inertial 
interaction between the mean flow and the turbulent fluctuations and of viscous 
dissipation. Three particular cases of distortion are investigated in varying 
degrees of detail; those of uniform rotation, uniform shear, and uniform irrota- 
tional distortion. For the first two, the total energy associated with the turbulence 
is found to decay, but for the third it is found in general to increase without limit. 
A general solution in terms of the spectrum functions for the restricted case of 
irrotational distortions is given, particular consideration being paid to  the 
asymptotic limits approached as the distortions (not necessarily the rates of 
distortion) become large. These show that for an arbitrary initial turbulent 
spectrum the asymptotic rates of growth are functions of the precise geometrical 
nature of the distortion, of an integral parameter of the initial spectrum function, 
of a Reynolds number based on the rate of distortion and the length scale of the 
initial turbulence, and of the contraction. A particular example, that of initially 
isotropic turbulence in its final period of decay subjected to an axisymmetric 
distortion, is worked out in detail and the solution (described in terms of mean 
turbulent intensities) displayed graphically for several values of the Reynolds 
number. 

1. Introduction 
When a weak homogeneous turbulent velocity field is uniformly distorted we 

may use a suitably linearized form of the Navier-Stokes equations to determine 
the effect of the distortion on the turbulent field. We suppose that the velocity 
field is the sum of a steady uniform distortion and of a small turbulent fluctuation. 
By neglecting quadratic terms in the turbulent velocities, linear equations are 
obtained. By well-known methods these can be converted into equations for the 
spectrum functions in wave-number space, and these in turn are, in certain 
particular cases, simply soluble. These equations preserve in some degree the 
nature of the full Navier-Stokes equations of motion, in that inertial forces-here 
the product of the interaction between steady flow and turbulence-pressure 
forces and viscous forces are all included. 

The effect of the interaction terms alone has been considered by Batchelor & 
Proudman (1954) (B & P hereafter), who suppose the strain to be sudden and 
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employ a Lagrangian approach in order to evaluate the effect of distortion on any 
particular small fluid element. A consideration of the simultaneous effects of 
inertial interaction and viscous dissipation suggests an Eulerian treatment such 
as has been outlined above. It is found that the results of B & P are obtained more 
readily by means of the latter treatment, while several other interesting results 
concerning the asymptotic states achieved after long times of mean strain are 
derived. The problem has also been discussed by Ribner & Tucker (1952); they 
survey some of the experimental results that are relevant, sufficiently at least to 
show that the particular linearization chosen is a suitable approximation to 
certain wind-tunnel arrangements. 

The notation used throughout follows that of Proudman & Reid (1954) 
(P & R). Mean values or averages, denoted by an overbar, are assumed to be 
ensemble averages. This avoids any difficulties that might arise if spatial averages 
were used. The validity of Fourier transformation has been discussed by Batchelor 
(1953). 

2. Dynamical equations 
We consider the uniform strain to be caused by a mean motion 

u, = cijxj, (2.1) 

whereCij are constants independent of position. For simplicity we shall take them 
to be independent of time also, though this is not essential; the analysis can be 
carried out equally well for the case 

cii = Cij(t) .  (2.2) 

We consider a turbulent velocity field ui to be superposed on the mean strain 
4 such that the velocity becomes the sum 

vi = ui+ui 

PIP = p t- WY 

and the pressure p is given by 

p being the uniform density, P the mean component and w the fluctuating com- 
ponent of the reduced pressure. The Navier-Stokes equation and the continuity 
condition are 

where v is the kinematic viscosity. By taking mean values we get 

au. a p  a 2 4  a q  
'axj axi axjaxj axi 

u. 2 +--v- = 0, - = 0, 

(2.5) 

- _  
since aqjat, ui, w are by definition zero; a (Gj ) / axk  we take to be zero, because we 
suppose further that the turbulent field is homogeneous. It can readily be shown 
that if at  any stage the turbulence is homogeneous then it will remain so, and thus 
the postulate of a homogeneous turbulent field is self-consistent. 

18-2 
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The equations for the turbulent components, ui, become 

aui au, aua aui aw a2ui 

at 'ax, 'ax, j ~ - & - ~ - . '  
U -- - -TJ.--u.-- 

Qij (k, t )  = (277)-3 Rij (r, t )  e-ik*r dr, 

rI,(k, t )  = i(277)-3 Pi(r, t )  e-ik.r dr, 

Qii(k,t) = ( 2 7 ~ ) - ~  &.(r,t)e-tk*rdr.  

J 
s 
s 

Because the turbulence is assumed to be weak, we are justified in neglecting the 
terms u,(au,/ax,) and the equation (2.7) can be linearized to give 

. 

We now define the following velocity product and pressure-velocityproduct mean 
values 

(2.10) 

Kj(r, t )  = iii(x, t) w i ( x +  r, t ) ,  J 
where q ( x , t )  represents the vorticity associated with the velocity u, and is 
given by 

(2.11) 

The functions on the left-hand side are written a5 functions of r and t only, since 
the original postulate of homogeneity removes the dependence on X. We also 
define the Fourier transforms of the functions (2.10) as 

(2.12) 

The many symmetry properties of the functions (2.10) and (2.12) and the conse- 
quences of the continuity equation are all given in P & R and are not repeated 
here. 

In  terms of these functions the equation (2.9) leads to the following dynamical 
equations for Rii (r, t )  

a a 
at ar, 
-Rij(r,t) = -CikRkj(r,t)-CjkRik(r,t)-CklrZ-Ri3(r,t) 

a a 82 
ari arj art art + - 5 (r, t )  + -Pi (r, t )  + 2v - Rij (r, t) .  (2.13) 

We may now take Fourier transforms of the equations (2.13) and eliminate 
the terms IIi (k, t )  by contraction and resubstitution (as in P & R) to obtain the 
relevant dynamical equations for the spectrum functions 

-2vk2Qij(k,t). (2.14) 
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Although well-known methods are available for solving this set of nine first- 
order simultaneous equations, it is not possible to display the general solution in 
neat tensorial form for arbitrary C,, and arbitrary initial values of Qij (k). Indeed, 
in most cases, particular solutions become excessively complex. 

One result concerning a general distortion is worth noting. Though the mean 
strain may be split into a uniform rotation plus a uniform irrotational distortion, 
the solution of the equations (2.14) (and equivalently for the inviscid case, or 
sudden strain approximation) is not such that the effects of rotation and irrota- 
tional distortion may be completely separated. In  their sudden strain approxima- 
tion, B & P suppose that the effect of rotation may be neglected; an inspection 
of equations (2.14) shows that this cannot in fact be true. 

Three particular cases have been examined in varying degrees of detail, those 
of uniform rotation, uniform shear and uniform irrotational distortion. The 
asymptotic form of the solution as t+m, when thespectrum is supposed known a t  
some initial instant, provides the most interesting information and this aspect of 
the solution is the one to which most attention will be given; for this limit tells us 
whether or not the turbulent field extracts more energy from the mean strain than 
is dissipated by viscosity. It also tells us how the turbulent field becomes 
oriented. If the asymptotic solution leads to a continuous increase in turbulent 
intensity then ultimately the linearization that we have adopted must fail, and 
inertial interactions within the turbulent field will become important. Indeed, 
experience shows that these interactions suffice to limit the growth in turbulent 
intensity. However, if we suppose the initial turbulence to be sufficiently weak, 
the effect of interactions is only felt after the asymptotic form has been sub- 
stantially achieved. 

These results have some connexion with stability theory: the arbitrary 
spatially bounded initial disturbance of stability theory is replaced in our case by 
an initial spectrum of (homogeneous) turbulence. Since in practice the arbitrary 
initial disturbance of stability theory is usually chosen to be a sinusoidal wave- 
like motion, the connexion becomes reasonably close. The presence of boundaries 
(or equivalently, the condition of zero disturbance at infinity) in the former and 
the absence of boundaries in the latter make the treatments complimentary. 

Uniform rotation. This case can be represented by C2, = - C,, = constant, all 
other Cii = 0. A full solution of the equations (2.14) for this choice of Cii has not 
been obtained because of their apparent intractability. However, it can readily 
be shown that the total kinetic energy associated with the turbulent field, 
J(Di$(k, t )dk ,  decays in time, in much the same way as it would in the absence 
of the mean rotation. By taking the inviscid case, we find that the total 
kinetic energy remains constant. Although these statements are rather crude, 
they represent all the information that has been obtained; in particular, no 
information about orientation along or perpendicular to the axis of rotation 
was derived. 

Uniform shear. This case can be represented by C,, = constant, all other 
Cii = 0. A complete solution has been obtained, but this is much too complicated 
to present here. As in the case of uniform rotation the relevant result is that the 
total energy ultimately decays with time. This result depends, it must be pointed 
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out, on the asymptotic form of the initial spectrum, aij (k, 0) ,  near k = 0, which, 
as Batchelor & Proudman (1956) have shown, must obey the relation 

Qij (k, 0) = ??%? (c - !$) kjm - Q) k,n I$, + O( k3 In k ) .  (2.15) 
47r2 

The precise form of (2.15) makes it very difficult to decide whether any significant 
orientation is taking place within the decaying system. However, the detailed 
asymptotic structure of the turbulent field would only be decisively important 
if the turbulent intensity were increasing, which is not the case. It is perhaps worth 
noting that the result we have obtained is consistent with the established result 
that (plane) Couette motion is stable to all small disturbances; this stability is 
evidently not dependent on the presence of boundaries. 

Uniform irrotational distortion. This proves to be the most interesting case of 
the three and the solution is presented in some detail in the following section. 
The general solution for a known initial spectrum is found to depend on the 
precise geometrical form of the distortion. If we define an expansion ratio, c, as 
the total relative amount of strain that has taken place along the principal axis 
of maximum rate of expansion, then the asymptotic behaviour of the total 
kinetic energy associated with the turbulent field can be expressed as a power of c,  
the index of this power lying between 0 and 1. For distortions in which expansion 
takes place along two of the principal axes of strain, the index is always unity, 
but for distortions in which contraction takes place along two of the principal 
axes of strain, the growth in energy is proportional to the ratio of the two con- 
tractions, respectively. Thus for axisymmetric distortion involving expansion 
along the axis of symmetry the index is zero, and the total energy tends to a 
constant. The coefficient of proportionality depends on the rate of straining, and 
involves a rather complicated integral parameter of the initial turbulent spectrum. 
The special case of isotropic turbulence is treated as an example. This allows the 
integral parameter to be expressed in a rather simpler form. 

3. General solution for irrotational distortion. Asymptotic limit for 
large distortions 

The restricted case of a uniform irrotational distortion will now be considered 
in detail; the time-dependent solution for an initially known weak turbulent field 
that is subjected to a uniform mean strain will be developed. 

The axes of the co-ordinate system can be chosen to lie along the principal axes 
of strain such that 

T represents a characteristic time describing the rate of distortion and a is a 
geometrical parameter such that - 1 4 a 4 4. Let us define an ‘ expansion ratio ’ 
c by the relation 

c = et/T, (3.2) 

whence (3.3) 
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c representing the extension along the principal axis of maximum extension. The 
equations (2.14) become 

(3.5) 

1 a 
arc, -k t -Qi i (k , c )  +2yTk2Qij(k,c) = 0, (3.4) 

where 

The equivalent equations for the vorticity spectrum functions Qij (k ,  c )  are then 

m, A@), h(3) = 1, - a, a - 1.  

a a 
ac ak, 

C- Q,j(k,c)-(h(Q+h(j)) Sl,j(k,c)-A@k - Q i j ( k , ~ ) + 2 ~ T k ~ Q i j ( k , ~ )  = 0, 

(3.6) 

(3.7) 
k2Sij - ki kj 

where 

To solve (3.6) we observe that the equation 

13.8) ( C % - A ( ~ ) ~ ~ ~ )  a a '  &(k,c)  = 0 

has a solution 

where 
qj ( k ,  C) = F&), 

x = (ck,, cpak2, ~ " - l k , ) .  
(3.9) 

(3.10) 

F$)(x) is an arbitrary function, except when a = 0. (The case a = 0 needs special 
treatment.) Next we observe that the equation (3.6) with Y = 0 has a solution 

Qp,-O)(k, c )  = ch(')+h~)Q(~.=O)(O)(X).  23 (3.11) 

Finally, we deduce that the full solution of (3.6) is given by 

Qij ( k ,  C )  = C~' (~)+~( ' )Q$~~(X)  B(X)/B(k),  (3.12) 

where B(k)  = exp( - v T ( k j - - k g - - - - -  a 1 1 - a  k f ) ] .  (3.13) 

The function a&) can be obtained since M, (k ,  c )  is known at  the initial instant, 
c = 1. The form for Qij(k,  c )  follows from relation (3.7). The intermediate solution 
(3.11) is just the one obtained by B & P. 

For a general initial vorticity spectrum function, given by Q&), the three 
mean square turbulent intensities, given by 

n n n  

and 

can in principle be evaluated for all values of c thus providing a measure both of 
the absolute growth or decay of the turbulent intensity and of its relative 
orientation. 
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The form of the solution for the asymptotic limit c --f co will now be considered, 
since this may be taken to indicate the long-term effect of the straining motion on 
the turbulence. It also allows the integrals to be simplified sufficiently for certain 
general results to be derived. 

It proves convenient to discuss the following distortions separately : 
(A) 0 < cz < 4; two principal axes of contraction. 
(B) a = 0; 'constant area' deformation. 
( C )  - 1 < 01 < 0 ;  two principal axes of expansion. 

The calculations involved in arriving at  the asymptotic limits given below are 
not included in detail since they are very largely straightforward. However, 
reference will be made to those points in the calculation at which particular 
properties-derived from the continuity condition or the equations of motion- 
of the initial spectrum function are employed. 

(A) 0 < cz < t. (The case 01 = 4 is similar but requires slightly more elaborate 
treatment. ) 

Lt u", = Lt [1[all(k,c)dk 
C-tm C+CO 

x exp ( - vT(1: +: z2 + l--a " )) all dl ,  dl, + smaller terms, 

from (3.12), (3.13)and (3.7),wherelisavariable ofintegrationrelatedlinearlytok. 
Before we can further simplify this expression we must make use of the result 

($0) (3.14) 
that 

[See Batchelor (1953), p. 28.1 If we suppose that the function Qiy(Zl, c - ~ Z ~ ,  c ~ - ~  Z3) 
can be expanded in the form* 

l l @ l Y  090) = 0. 

+smaller terms, (3.15)t 

the lower order terms not being present because of (3.14) or because of the 
conditions of symmetry that must be satisfied by the spectrum function, then 
we may write 

+ O ( C - ~ - ~ ~  In c) 

+ 0 ( ~ - 1 - 2 ~  In G) . (3.16) 

* This form is certainly valid near the origin in I-space-where difficulties might other- 
wise be expected-using Batchelor & Proudman (1956), equation (5.31). 

aa,\) a%2:0:( k) 
(II, 0 , O )  denotes ~ evaluated at ( I I ,  0, 0). +q- ak; 
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In a similar fashion we find that 

x exp { - v T  (li + + dl, dl, dZ, + smaller terms 
l2 l2  11 

(3.17) 

and that 
(1; -k C2Z2,) 12, a q y  ( L O ,  0) 

x exp ( - vT(l;+: l2 + l-a " )]dZ1dZ2dZ3 
m ,3202'0) 

11 (3.18) + __ c1-2a/-m akz, ( I l ,  0,O) e-YTz:dll +smaller terms. 

We see then that the total kinetic energy behaves as c1-2a-which may be written 

and that it becomes wholly oriented axisymmetrically in the plane perpendicular 
to the principal axis of expansion. The asymptotic limits (3.17) and (3.18) for;: 
and 2 have been expressed in terms of an integral parameter 

7Ta 

4vT  

C1-a Ic a , that is, as the ratio of the larger contraction to the smaller contraction- 

m 

( I l ,  0,O) e-YTz:dll 

which may be assumed known if the initial turbulence is completely specified. 
The case a = 4 leads to the corresponding results 

ij -+ O(c-21n c), ( 3.1 6') 

which is a constant, since 

aw;y awg) 
(11,0,0) = ~ (ll,O,O). ak; ak; 

(B) = 0. 
We find that 

u", + O(c-llnc), 

(3.17'-3.18') 

(l;  + c21;) O$;)(Zl, l ,  ( 2  In c)-*, 0)  exp { - vT( l ;  + Zi + 1;)) dll dz2 dl, 
-+-+ll) 4 2 c(2 In c)* (5 21nc 

c a q y  
- (Il, 0 , O )  e-vTzfdll, 

8vTlnc 2%; 

(3.19) 

(3.20) 

- (Z~+~~(21nc)-~12,)0~~~(1,,1,(21nc)-*, O)exp{ ~~ - v T ( Z ~ + Z ~ + l ~ ) ~ d z l d 1 2 d ~ ~  
c( 2 In c)* 

(3.21) 
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The asymptotic limits (3.20) and (3.21) that are O(c(lnc)-l) do not in fact con- 
stitute a discontinuity in behaviour of u;, u; at a = 0 because of the factor a in 
(3.17) and (3.18) [and a similar disguised factor in (3.23) and (3.24) below]. 

requires slightly more elaborate treatment .] 

_ _  

(C) - 1 < a < 0. [The case a = - 1 is similar, but, like the case a = 4, it 

Again using the relations (3.12), (3.13) and (3.7) we obtain the limits 

(3.23) 

and an identical asymptotic expression for 2. The relevant integral parameter 
that appears in (3.23) is not so simple as the oneobtainedin (3.17) and (3.18). The 
convergence of the integral is assured because of the 1; behaviour of Qi;) near 
1, = 0 as given by (2.15). We see that the total kinetic energy grows as c and 
that once again it becomes oriented axisymmetrically in the plane perpendicular 
to the axis of greatest expansion. For a < - 4 the mean square component ..",does 
increase as c --f co, whereas for a > - 8,  it tends asymptotically to zero. 

The case a = - 1 leads to the solution 

in which all components grow at the same relative rate. The results (3.16) to 
(3.24) can be expressed concisely by plotting the asymptotic form for the total 
kinetic energy, u; + u; + ui, expressed as a power of c, the expansion ratio, against 
the geometrical parameter a. In  figure 1 we plot y against a, where y is given by 
the relation: 

Total kinetic energy cc cy. 

The point a = 0 is special in that 

- _ _  

Total kinetic energy cc c(1n c)--l, 

but as has been explained above this is only an apparent singularity in behaviour. 
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The results can be further simplified in the case of initially isotropic turbulence, 
for the tensor spectrum functions can then be expressed in terms of an energy 
spectrum function E ( k ) ,  which is such that 

Y 

1 

O *  

Fora = 4 

i I 

For a = 0 

JOw e-~l ' ladl .  _ _  
u;, u; 3 __ - 

8vT In c 
F o r - l < x < O  

(3.25) 

(3.26) 

(3.27) 

(3.28) 

a 

FIGURE 1. Growth of kinetic energy expressed as a power, y, of the expansion ratio vs a. 

F o r a =  - 1  

(3.30) 

Additional information concerning the orientation that is induced in the tur- 
bulence aa c -+ 00 can be derived by considering the asymptotic form of the 
vorticity spectrum (3.12). This is such that the dominant term flll(k,c) is 
appreciable only when 

k l +  0 for a > 0, 

k l , k z +  0 for x < 0. 

By carrying out the Fourier transformations required to  interpret this result in 
co-ordinate space we find that covariances become, in the limit, independent of 
separation in the rl direction for a > 0, and independent of separation in both the 
r1 and r2 directions for a < 0. Thus for a > 0 we may say that the turbulence is 
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truly two-dimensional, since the component of intensity tends to zero (see 
(3 .16 ) )  ; for - + < a 6 0, the turbulence is not only two-dimensional, but covari- 
ances are functions of one space variable only, UTstill tending to zero (see (3 .22 ) ) ;  
for - 1 < a 6 -8 only the ratio u;/ui tends to zero, and the result is a little 
weaker; for a = - 1 the turbulent intensity ceases to be oriented in a plane, 
though covariances remain functions of one space variable only. 

The limiting structure of the velocity spectrum as c -+ 00 can also be stated. 
For the case a! > 0, we find that the dominant contribution tends to the form 

_ -  

Without attempting a rigorous definition, we may say that the spectrum 
function tends to a universal form where the integral parameter 

is all that remains of the initial turbulent distribution. 

It is 
For the case a < 0, the asymptotic structure cannot be so neatly expressed. 

kmk,+6 k2 
mn R(?(ck,, r U k 2 ,  0) 

k4 
Q$j (k, C) + ~ ~ ~ , , ~ e l j ~  - 

Since this takes its dominant values for k,, k, and k, all tending to zero, a highly 
singular structure is approached. It is universal only in so far as energy is con- 
centrated at zero wave-number. 

4. Axisymmetric extension of an initially isotropic turbulent field in 
its final period of decay 

In the previous section, attention has been concentrated on the asymptotic 
limit that applies as c --f co. We shall now consider the time-dependent solution 
for a particular case as an example of the way in which the asymptotic limit is 
approached. For simplicity we take the initial turbulence to be isotropic, and 
because our conditions refer specifically to weak turbulent fields we take the 
turbulence to be in its final period of decay. This may be described by the energy 
spectrum* 

E(k)  = k4e--k21k:, (4 .1 )  

where 

and ko is a characteristic wave-number, 
We choose the case of axisymmetric distortion, for which a = 4, as our straining 

field. This will lead to a finite asymptotic solution for the total kinetic energy and 

* See Batchelor (1953) and the subsequent paper Batchelor t Proudman (1956). 
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can be compared with the sudden strain solution given by B & P. We shall 
calculate, as suitable defining characteristics of the turbulent field, the ratios 

where 

and 

On substituting (4.5) and (4.6) into (4.3) and (4.4) and after slight simplification 
we find that p1 and pz may be written 

(4.9) (1 - x2) dz -~ 
3 1  

” = Gl-16 - (1 - C-3) X2}2 {[I + 2(C - 1) 71 +7(3 - 2C -C-2) Z 2 } t ’  

ax 

(4.10) 
(4.11) where T = ~ T k i .  

T may be regarded as an inverse Reynolds number where the length scale, ktl, is 
derived from the characteristic length scale of the initial turbulent spectrum, 
and the time scale, T ,  is derived from the mean rate of strain. It will be observed 
that the integrals (4.9) and (4.10) for p1 and p2 are functions of c and 7 only. These 
integrals have been evaluated exactly and are displayed in graphical form in 
figures 2-5 for T = 1,0-25, 0.1, 0.05, as continuous functions of c.  (Using the 
relation (3.2), these can readily be converted into relations between pl  (or pz) and 
time, t.) Also included are the relevant curves for p1 ( t ) ,  p2 ( t )  that would apply in 
the absence of distortion; interpretedfor convenience asp; ( c ) ,  pb ( c ) ,  these provide 
a measure of the relative action of viscosity in the absence of mean strain and are 
calculated from the relation 

1 X 2  p - 3  - sc  [’ +c6{1 - (1 - Cp3) x2}>” {[I + 2(C - 1) T ]  f 7(3 - 2 C  - C-’) X2}&’ 

(4.12) 

which is readily derived. The sudden strain approximation of B & P is of course 
the limiting case that applies when r + 0. 
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We may also derive from (4.9) and (4.10) the asymptotic limits, as c -+ co, 
(7 9 O ) ,  

(4.13) 

(4.14) 

These correspond to the results (3.16’), (3.17’-3.18’) obtained earlier, and of 
course (4.14) may be obtained directly from the latter result. In  general terms 
we see that 2 decays more rapidly than it would in the absence of mean strain, 
while g+% approaches a steady state in which the rate of growth due to  
straining is exactly balanced by the viscous decay. 

r i m  
- 
Y 

1 2 3 c  4 5 6 

FIGURE 2. y,, ,uz as functions of c; 7 = 1. 

- T-- 
P8.S 

---__- 

1 5 10 20 25 30 35 
l5 c 

. .  

o k i  I I I I I I 
1 5 10 20 25 30 35 

l5 c 

FIGURE 3. y,, ,u2 as functions of c; 7 = 0.26. 

5. Discussion 
From the linearized treatment of strained turbulence given above and in 

particular from a consideration of the asymptotic behaviour as c -+ 00 (see Q 3) it 
seems clear that in a general irrotational strain a balance cannot be achieved 
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between interaction and viscous terms alone. The total energy associated with 
the turbulent components grows indefinitely and, as has been pointed out earlier, 
must ultimately reach the state a t  which non-linear turbulent effects are appre- 
ciable. This aspect of the problem is treated in some detail by Townsend (1956), 
Chap. 4, who considers the equilibrium structure attained by the turbulence 
when it is subjected to just the type of irrotational distortion represented by 
(3.1). [From an experimental point of view, irrotational distortions are the only 

- - - - - --- - - - - 
f --- 

YPW 
N 

J: .. 
P 

I I I 1 
1 10 20 40 50 60 70 

30 c 

FIGURE 4. pl, pa aa functions of c; T = 0.1. 

C 

FIQURE 6. h , p z  as functions of c ;  T = 0.05. 

type that can be set up instantaneously and so the restriction on generality that 
has been accepted above for reasons of expediency finds some justification in 
physical circumstances.] It had been hoped, when this work was started, to 
include inertial effects in the dynamical treatment, in the manner of P & R, and 
to use the non-inertial solution obtained in § 3 as a first approximation (from the 
point of view of structure) to the problem of maintained shear flow turbulence. 
However, despite the simplifications achieved by considering the turbulence to be 
two-dimensional, as described at  the end of 0 3, a dynamical treatment including 
non-linear terms proved to be virtually intractable. 
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A more particular application of the linearized solution is suggested by Ribner 
& Tucker (1952) who summarize certain experimental evidence concerning wind- 
tunnel turbulence. This refers to the reduction in relative energy of the residual 
turbulence that persists after screening when the air stream is passed through a 
rapid contraction. Although the analysis has not been given here it is a relatively 
simple matter to extend the solution (3.12) to cover the case there Cij is a function 
of time; it may be supposed that a small element of fluid is subjected as it passes 
through the contraction to a time varying, but instantaneously ,uniform, con- 
traction corresponding to the local value for the contraction at its particular 
station within the wind-tunnel. In  this way the behaviour of the low energy 
turbulent field entering the contraction may be followed through the contraction, 
account being taken of viscosity as well as of local strain. 

However, the calculations involved in an exact analysis would be formidable 
and the only practicable method would be to employ an approximate solution 
based on the treatment given in $4 as a crude model. A consideration of the 
Reynolds number for the turbulence entering the wind-tunnel contraction- 
based on the integral length scale and the root mean square intensity-for the 
cases quoted by Ribner & Tucker [ 11 in the case of McPhail(l944) and 7 in the 
case of Hall (1938)l shows that the hypothesis of initially weak turbulence is not 
unreasonable; for the experiments of Batchelor & Townsend (1948) show that the 
final period of decay is reached a t  a Reynolds number-based on the dissipation 
length scale-of about 5. What the results of $3  show is that an axisymmetric 
contraction is probably the most effective type of contraction for reducing the 
relative turbulent in tensity. 
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